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1. INTRODUCTION

Annular and perforated plates constitute vital components in mechanical
engineering, such as in nuclear reactors. Natural frequencies of components have
attracted extensive interest when exploring the structural responses to various
excitations; this preliminary involves high risk plants. Among perforated plates,
annular plates have a particular importance, due to their axial symmetry. Using
annular plates in design and engineering of a mechanical system is a conventional
approach having become quite pervasive in certain industries. Speci"c applications
of this type of mechanical component include turbines, saw blades, computer
magnetic recording disks, gears, phonograph records and percussion musical
instruments [1}3]. The prominent role of these components in engineering
necessitates a comprehensive understanding of their mechanical behavior. In
a pioneering work, Southwell [4] investigated natural frequency for annular plates
vibration in a vacuum. These plates are important elements of machines and
structures, with many investigators having explored their vibration problems in
detail [5}19]. Narayana Raju [5], and Vogel and Skinner [6] analyzed this
problem, demonstrating various combinations of boundary conditions to facilitate
mechanical design purposes.

A critical aspect of such mechanical behavior is the vibration response of annular
and perforated plates having contact with a #uid on one or both sides. As well
known, a heavy #uid strongly in#uences the natural frequencies of a thin-walled
structure. Therefore, annular plates having contact with a #uid is a topic of
practical interest, particularly regarding the signaling problem of submarines and
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the vibration problems of local ship structures, ocean structures, dams and nuclear
reactors. Limited investigators have examined annular and perforated plates
having contact with a #uid on one or both sides. De Santo [20] experimentally
investigated perforated plates used in nuclear reactors. Later, Kubota and Suzuki
[21] theoretically and experimentally studied annular plates vibrating in an
annular cylindrical cavity "lled with a #uid. Amabili and Frosali [22] also
theoretically investigated the free vibrations of annular plates placed on a free
surface. Amabili [23], in using experimental coe$cients, computed natural
frequencies of annular plates placed on a free #uid surface or completely immersed
in water. Amabili et al. [24] investigated the natural frequencies of annular plates
on an aperture of an in"nite rigid wall and in contact with a #uid on one side. Their
work calculated only three boundary conditions: a clamped}clamped edge,
a free}free edge and a clamped (outer)}free (inner) edge.

Based on Kwak's approach [24], this study thoroughly examines the annular
plates placed on the #uid domain that is an annular aperture of an in"nite rigid
wall. The #uid is assumed to be an incompressible, inviscid and irrotational velocity
potential. Nine boundary conditions, having non-dimensionally added virtual mass
incremental (NAVMI) factors for annular plates having contact with #uid on one
side, are calculated entirely by the Mathematica [25] software. Also, Ross's "nite
element method [26] is employed to calculate natural frequencies of circular and
annular plates in air and having contact with water on one side or both sides.
According to the calculation results, di!erences arise between natural frequencies in
air and having contact with water on one or both sides. Both the proposed method
and Ross's "nite element method are compared with the experimental data, thereby
yielding the mode's accurate applications. Moreover, the natural frequencies of
a circular plate in #uid are also studied [27, 28]. Calculation results are appropriate
for engineering design applications.

2. THEORETICAL BACKGROUND

Figure 1 depicts an annular plate having contact with #uid on one side, where a,
b and h represent the outside radius, the inside radius and thickness of the annular
plate, respectively, and ¸ denotes a #uid domain. Not only is the proposed method
based on the thin plate theory and Kwak's theory [24], but it also uses the Hankel
transform to solve the #uid}plate coupled system; mixed boundary conditions are
expressed by Titchmarch triple integral equations, [29]. The Rayleigh's quotient
accounts for the squares of the natural frequencies of the annular plate in air are
proportional to <

P
/¹*

P
[30], where <

P
is the maximum potential energy and ¹*

P
is

reference kinetic energy for annular plate [31]. On the other hand, the squares of
the natural frequencies in #uids are proportional to the ratio between the maximum
potential energy of the plate and the sum of the reference kinetic energy for both the
plates, ¹*

p
, and the #uid, ¹*

F
. The non-dimensionalized added virtual mass in-

cremental (NAVMI) factors are given by the ratio between the reference kinetic
energy of the #uid and the kinetic energy of the plate. To easily
comprehend the proposed method, i.e., a development of Kwak's theoretical
approach, Tables 1 and 2 present the simpli"ed theoretical procedures.



Figure 1. Geometry of the annular plate having contact with water: a outer radius; b inner radius;
h thickness of plate; ¸ unbounded #uid domain; r radial direction; w displacement; S1 and S3 in"nite
rigid wall; S2 annular plate region; S

=
in"nite surface.
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The frequency parameters (in air) and NAVMI factors (in #uid) are two
prominent factors in the theoretical procedure of the natural frequencies plates in
#uid. The frequency parameters (in air) are derived on the basis of the thin
plate theory. In 1965, Vogel and Skinner [6] calculated the parameters using
machine computations. The Bessel functions were replaced by their approximate
polynomial equivalents [32]. In this study, we use Mathematica software of
Numerical Root Finding and Numerical Integration [25] to obtain numerical
computations of natural frequency parameters (in air) and the NAVMI factors (in
#uid) based on the thin plate theory and Kwak's theory which are the "rst and
second kinds of Bessel and modi"ed Bessel functions.

3. VERIFICATION AND NUMERICAL EXAMPLES

In the air or water domain, "ve di!erent sizes plates are adopted to verify the
proposed method and Ross's "nite element method. Plate d1 is circular and the
material is carbon steel; plate d2 is annular but its material is an aluminum alloy.
The other plates' (d3,d4,d5) material is low carbon steel. For circular and
annular plates, Table 3 lists the detailed properties. The boundary conditions of
clamped and simply supported edge are applied for circular plates, whereas a free



TABLE 1

¹he theoretical procedure for annular plate vibration in a vacuum [7, 8]

1. Assumption

(1) Thin plate theory
(2) Absence of loss
(3) The continuous system of the annular plate
(4) Linearly elastic homogeneous and isotropic material
(5) E!ects of shear deformation and rotary inertia are neglected
(6) The maximum displacement is small
(7) Deformation due to gravity can be neglected

2. Procedure

Step Descriptions Formulations

1 The governing equation
D+ 4w#o

p
h
L2w
Lt2

"0

2 The Laplacian operator in
the polar co-ordinates r, h: + 2"

L2

Lr2
#A

1

rB
L
Lr

#A
1

r2B
L2
Lh2

3 The exact solutions w" w(r, h, t)

"

=
+

m/0

=
+
n/0

=
mn

(r) cos (mh)g
mn

(t)

where

=
mn

(r)"A
mn

J
m
(j

mn
r/a)#B

mn
>
m
(j

mn
r/a)

#C
mn

I
m
(j

mn
r/a)#D

mn
K

mn
(j

mn
r/a)

4 Frequency
f
mn
"A

j2
mn

2na2BS
D

o
P
h

1170 LETTERS TO THE EDITOR
outside edge and either a clamped or free inner edge are applied for annular
plates. For Ross's "nite element method [26], Figure 2 displays the plate
element and is described by internal and external nodal circles; it has two degrees
of freedom per node. The #uid element is also of annular form in Figure 3: it
has two internal and two external nodal circles in line with the nodal circles
of the plate. Figure 4 displays the typical mesh of the circular plate in #uid,
and Figure 5 displays the mesh of the annular plate in #uid. Both the proposed
method and Ross's FEM employ the added virtual mass approach to solve
the frequencies of the plates vibration coupled with #uid. The veri"cation
of the proposed method and Ross's FEM in air or in water correspond more
closely to each other than the experimental data for the fundamental
mode and frequency. However, the computations are not as accurate for higher
modes.



TABLE 2

¹he theoretical procedure for annular plate vibration having contact with -uid [24]

1. Assumption

(1) Wavelength in a #uid is smaller than diameter of plate, i.e., #uid motion is small
(2) Dynamic #uid motion is incompressible, inviscid and irrotational
(3) The mode shapes in #uids and in a vacuum are to be the same
(4) Thin plate theory
(5) Linearly elastic homogenous and isotropic material
(6) Free surface boundary condition, u"0, L//Lz"0

2. Procedure
Step Descriptions Fomulations

1. Velocity potential function ;(r, h, z, t)"/(r, z) cos (mh) gR
mn

(t)
where g

mn
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2. /(r, z) satis"es Laplace equation L2/
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3. /(r, z) boundary conditions L/(r, z)
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3
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Lz K
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4. Hankel Transform /M (m, z)"P
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integrating

5. Step 2 is simpli"ed the o. d. e. d2

dz2
/M !m2/M "0

6. The solution of the o. d. e /M (m, z)"B (am)e~mz, z*0

7. De"ned the inverse Hankel
Transform
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8. Instead of step 6 /(r, z)"P
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TABLE 2 Continued

9. Mixed boundary conditions
(Titchmarch triple integral
equations)
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17 Application of Rayleigh's
quotient
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3.1. CIRCULAR PLATE d1 (CLAMPED, SIMPLY SUPPORTED)

Natural frequencies of plate d1 in air and in water are calculated by the
proposed method and Ross's FEM. Table 4 indicates that by using the proposed
method to obtain the natural frequency, the fundamental mode of a clamped edge
circular plate is 66 Hz in water on one side and 165 Hz in air. The same case by the
Ross's FEM it is 60 Hz in water and 165 Hz in air. Two di!erent kinds of behavior
are observed for the mode; the "rst mode in air correlates well with the theoretical
data, while the other has only slightly higher frequencies. On the other hand, the
natural frequencies in water approximately have a value of 40% in air for the lowest
mode. The phenomena for a simply supported circular plate are the same. Table 5
reveals that by using the proposed method to obtain the natural frequency, the
fundamental mode is 31 Hz in water on one side and 80 Hz in air. For the same case
by Ross's FEM, it is 27 Hz in water and 80 Hz in air.

3.2. ANNULAR PLATE d2 (OUTSIDE/INSIDE, FREE/CLAMPED)

The proposed method and FEM data obtained for the annular plate having
contact with water on both sides are compared with the experimental data.



TABLE 3

¹he plates1 geometrical and material properties

Plate no. Plate 1 Plate 2 Plates 3}5

Geometry Circular Annular Annular
Material Carbon steel Aluminum alloy Low carbon steel

Inside radius (mm) * 15 15,30,50
Outside radius (mm) 175 200 100

Thickness (mm) 2 3)251 1)5
Mass density (kg/m3) 7870 2560 7800

Young's modulus (Gpa) 207 70 206
The Poisson ratio 0)3 0)3 0)3

Water density (kg/m3) 1000 1000 1000

Figure 2. Ross's annular plate element.
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Table 6 summarizes the results for plate d2; the same modes are listed in Tables 4
and 5. According to these results, experimental natural frequencies in water on both
sides are slightly higher than the proposed method's data. The natural frequency of
the fundamental mode obtained by the proposed method is 15 Hz in water on both
sides and 83 Hz in air. This subsequently obtained by Ross's FEM is 14 Hz in
water, 83 Hz in air and by experimental data is 17 Hz in water and 78 Hz in air. For
the lowest mode, the natural frequencies in water have roughly a value of 18% in
air.

3.3. ANNULAR PLATE d3, d4 AND d5 (BOTH FREE EDGES)

The following case is presented to verify the current method and experimental
data [25] on three annular plates in air and completely immersed in water for both



Figure 3. Ross's annular #uid element.

Figure 4. Mesh for circular plate in #uid.
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free edges. As calculated by the proposed method, Table 7 compares the natural
frequencies with the experimental data for the plates having a ratio b/a equal to 0)3,
0)15 and 0)5. The di!erent characteristics are detected for mode shapes in air with
n"0 and with n'0. Mode shapes in air with n"0 correspond closely to the
experimental data, while n'0 has a slightly higher frequency. In addition,
frequencies in water on both sides by the proposed method are lower than the
experimental data. Moreover, the average natural frequency in water has roughly
a value of 54% in air.



Figure 5. Mesh for annular plate in #uid.

TABLE 4

Plate d1 for circular plate (clamped edge)

Mode Natural frequency in air (Hz) Natural frequency in water on one
side (Hz)

m n Proposed
method

Ross's FEM Proposed
method

Ross's FEM

0 0 165 165 66 60
0 1 642 643 355 339
0 2 1437 1455 927 944
0 3 2552 2612 1798 1956

Note: m denotes the number of nodal diameters; n denotes the number of nodal circles.

TABLE 5

Plate d1 for circular plate (simply supported)

Mode Natural frequency in air (Hz) Natural frequency in water on one
side (Hz)

m n Proposed
method

Ross's FEM Proposed
method

Ross's FEM

0 0 80 80 31 27
0 1 479 480 269 249
0 2 1196 1206 780 781
0 3 2231 2310 1585 1781

Note: m denotes the number of nodal diameters; n denotes the number of nodal circles.
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TABLE 6

Plate d2 for annular plate (outside/inside, free/clamped)

Mode Natural frequency in air (Hz) Natural frequency in water on one side
(Hz)

m n Proposed
method

Ross's
FEM

Experimental Proposed
method

Ross's
FEM

Experimental

0 0 83 83 78 15 14 17
0 1 489 492 420 124 148 146
0 2 1430 1450 1255 485 570 *
0 3 2839 2896 2465 1153 1277 *

Note:* Denotes the absence of experimental data. m denotes the number of nodal diameters;
n denotes the number of nodal circles.

TABLE 7

Plate d3,d4 and d5 annular plate (outside/inside, free edges)

Mode Natural frequency in air (Hz) Natural frequency in water on both
sides (Hz)

b/a"0)3

m n Proposed method Experimental Proposed method Experimental

2 0 182)14 182)46 82)92 92)97
0 1 310)14 300)02 155)28 173)32
3 0 455)39 455)64 232)60 252)30
4 0 808)75 806)98 442)27 472)58
0 2 1869)44 1832)91 1148)29 1188)77
1 2 2182)45 2126)98 1356)52 1380)74

b/a"0)15

0 4 810)63 * 442)68 455)10

b/a"0)5

0 4 782)16 * 427)84 448)20

Note:* Denotes the absence of experimental data. m denotes the number of nodal diameters;
n denotes the number of nodal circles.
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4. CONCLUSIONS

Fluid heavily in#uences the natural frequencies of an annular plate, having
decreased vacuum frequency by roughly 50% for the fundamental mode. The
results are summarized as follows.
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The natural frequencies in #uid are generally in#uenced by (NAVMI) factors.
For a mode's certain nodal diameter (m), the NAVMI factor decreases with an
increasing number of nodal circles (n). For a mode's certain nodal circle(n), the
NAVMI factor decreases with an increasing number of nodal diameters (m).
Moreover, for a certain mode, the NAVMI factor decreases with an increasing
inner radius/outer radius ratio. On the e!ect of plate boundary condition, it is
found that the clamped}clamped edge case has a larger value than the free}free
edge case for the natural frequency in air and in water. The natural frequency of the
free}free edge case having contact with water on both sides has roughly a value of
5}40% clamped}clamped edge case.
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APPENDIX A: NOMENCLATURE

a outer radius of annular plate
A(g) non-dimensionalized variable (gB(g))
b inner radius of annular plate
c ratio between the inner and outer radii (b/a)
D #exible rigidity of annular plate
E Young's modulus
f
mn

natural frequency of the generic mode in air (Hz)
f
Fmn

natural frequencies of plate in #uid on one side (Hz)
f *
Fmn

natural frequencies of plate in #uid on both sides (Hz)
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gR
mn

(t) derivative of g
mn

with respect to time
h thickness of the annular plate
I
m
,K

m
modi"ed Bessel functions of the "rst and second kinds

J
m
,>

m
Bessel functions of the "rst and second kinds

¸ #uid domain
m number of nodal diameter
n number of nodal circles
r radial co-ordinate
S
1
,S

3
#uid in contact with an in"nite rigid wall through the surface

S
2

#uid in contact with the plate through the surface
¹*

F
reference kinetic energy of #uid

¹*
p

reference kinetic energy of annular plate
u spatial distribution of the velocity potential u(r, h, z)
; velocity potential ;(r, h, z, r, t)
<
p

maximum potential energy of annular plate
w transverse displacement of annular plate w(r,h, t)
=

mn
(r) A

mn
J
m
(j

mn
r/a)#B

mn
>

m
(j

mn
r/a)#C

mn
I
m
(j

mn
r/a)#D

mn
K

m
(j

mn
r/a)

where A
mn

, B
mn

, C
mn

, D
mn

are the mode shape constants
=

mn
(r, h) de#ection shape function of the generic mode =

mn
(r) cos (mh)

b
mn

added virtual mass incremental (AVMI) (¹*
F
/¹*

p
)

C
mn

non-dimensionalized added virtual mass incremental factor (NAVMI)
+ 2 Laplacian operator
g non-dimensionalized variable (am)
j
mn

frequency parameter
l the Poisson's ratio
o non-dimensionalized variable (r/a)
o
p

mass density of annular plate
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